A Start To End Machine Learning Approach To Maximize Scientific Throughput From The LCLS-II-HEMishra, Aashwin, Seaberg, Matt, Roussel, Ryan, Poitevin, Fred, Thayer, Jana, Ratner, Daniel, Edelen, Auralee, Mehta, Apurva
•
arXiv (2025)
Novel Applications
(45.5%)
Tools & Libraries
(41.7%)
Analysis note: measurement of thrust in $e^{+}e^{-}$ collisions at $\sqrt{s}$ = 91 GeV with archived ALEPH dataBadea, Anthony, Baty, Austin, Bossi, Hannah, Chen, Yu-Chen, Chen, Yi, Zhang, Jingyu, Innocenti, Gian Michele, Maggi, Marcello, McGinn, Chris, Peters, Michael, Sheng, Tzu-An, Mikuni, Vinicius, Avaylon, Matthew, Komiske, Patrick, Metodiev, Eric, Thaler, Jesse, Nachman, Benjamin, Lee, Yen-Jie
•
arXiv (2025)
Novel Applications
(40.0%)
Statistics & Trends
(37.4%)
Closing the loop: Autonomous experiments enabled by machine-learning-based online data analysis in synchrotron beamline environmentsLinus Pithan, Vladimir Starostin, David Mareček, Lukas Petersdorf, Constantin Völter, Valentin Munteanu, Maciej Jankowski, Oleg Konovalov, Alexander Gerlach, Alexander Hinderhofer, Bridget Murphy, Stefan Kowarik, Frank Schreiber
•
HAL (2023)
Novel Applications
(36.4%)
Tools & Libraries
(100.0%)
Harnessing Machine Learning for Single-Shot Measurement of Free Electron Laser Pulse PowerKorten, Till, Rybnikov, Vladimir, Vogt, Mathias, Roensch-Schulenburg, Juliane, Steinbach, Peter, Mirian, Najmeh
•
Journal (2024)
Novel Applications
(33.4%)
Tools & Libraries
(100.0%)
Physics-aware modelling of an accelerated particle cloudEmmanuel Goutierre, Christelle Bruni, Johanne Cohen, Hayg Guler, Michèle Sebag
•
MLPS 2023 - Machine Learning and the Physical Sciences Workshop 23023 - At the 37th conference on Neural Information Processing Systems (NeurIPS) (2023)
Novel Applications
(49.8%)
Tools & Libraries
(47.8%)
Reinforcement Learning for Accelerator Beamline Control: a simulation-based approachIbrahim, Anwar, Petrenko, Alexey, Kaledin, Maxim, Suleiman, Ehab, Ratnikov, Fedor, Derkach, Denis
•
arXiv (2025)
Reinforcement Learning & Autonomous Systems
(60.6%)
Novel Applications
(56.0%)
Tools & Libraries
(100.0%)
Road map for the tuning of hadronic interaction models with accelerator-based and astroparticle dataAlbrecht, J., Becker Tjus, J., Behling, N., Blazek, J., Bleicher, M., Boelhauve, J., Cazon, L., Conceicao, R., Dembinski, H., Dietrich, L., Ebr, J., Ellbracht, J., Engel, R., Fedynitch, A., Fieg, M., Garzelli, M.V., Gaudu, C., Graziani, G., Gutjahr, P., Haungs, A., Huege, T., Hymon, K., Hünnefeld, Mirco, Kampert, K.-H., Kardum, L., Kolk, L., Korneeva, N., Kröninger, K., Maire, A., Menjo, H., Morejon, L., Ostapchenko, S., Paakkinen, P., Pierog, T., Plotko, P., Prosekin, A., Pyras, L., Pöschl, T., Rautenberg, Julian, Reininghaus, M., Rhode, W., Riehn, F., Roth, M., Sandrock, A., Sarcevic, I., Schmelling, M., Sigl, G., Sjöstrand, T., Soldin, D., Unger, M., Utheim, M., Vícha, J., Werner, K., Windau, M.E., Zhukov, V.
•
arXiv (2025)
Novel Applications
(43.8%)
Beamline Design & Simulation
(40.8%)
Tools & Libraries
(100.0%)
Surrogate Models studies for laser-plasma accelerator electron source design through numerical optimisationKane, G., Drobniak, P., Kazamias, S., Kubytskyi, V., Lenivenko, M., Lucas, B., Serhal, J., Cassou, K., Beck, A., Specka, A., Massimo, F.
•
arXiv (2024)
Beamline Design & Simulation
(43.0%)
Novel Applications
(42.4%)
Surrogate Models
(100.0%)
Towards Agentic AI on Particle AcceleratorsSulc, Antonin, Hellert, Thorsten, Kammering, Raimund, Houscher, Hayden, St. John, Jason
•
Journal (2024)
Reinforcement Learning & Autonomous Systems
(59.8%)
Novel Applications
(58.9%)
Tools & Libraries
(100.0%)
A Machine Learning Approach to Li-Ion Battery ModuleRam U. Kalyankar, Kalpak R. Sagar, Vipul M. Patel, Jyotirmay Banerjee, Hemantkumar B. Mehta
•
Lecture Notes in Mechanical Engineering (2025)
•
DOI: 10.1007/978-981-96-8508-0_21
Novel Applications
(30.0%)
Tools & Libraries
(29.4%)
Machine learning as a service system for particle accelerator and its application in CSNSMei, Hao, Zhang, Yuliang, Peng, Na, Cheng, Sinong, He, Yongcheng, Xue, Kangjia, Wang, Lin, Li, Mingtao, Wu, Xuan, Zhu, Peng
•
Radiation Detection Technology and Methods (2025)
•
DOI: 10.1007/s41605-025-00527-7
Tools & Libraries
(100.0%)
Novel Applications
(60.5%)
Reinforcement learning-trained optimisers and Bayesian optimisation for online particle accelerator tuningKaiser, Jan, Xu, Chenran, Eichler, Annika, Santamaria Garcia, Andrea, Stein, Oliver, Bründermann, Erik, Kuropka, Willi, Dinter, Hannes, Mayet, Frank, Vinatier, Thomas, Burkart, Florian, Schlarb, Holger
•
Sci.Rep. (2024)
•
DOI: 10.1038/s41598-024-66263-y
Reinforcement Learning & Autonomous Systems
(58.3%)
Novel Applications
(48.5%)
Machine Learning for Optimized Polarization at Jefferson LabJeske, Torri, Kasparian, Armen, Lawrence, David, Britton, Thomas, Schram, Malachi, Moran, Patrick, Fanelli, Cristiano, Guo, Jiawei, Jarvis, Naomi, Maxwell, James, Keith, Chris
•
EPJ Web Conf. (2025)
•
DOI: 10.1051/epjconf/202533701223
Novel Applications
(35.1%)
Statistics & Trends
(29.7%)
Surrogate Models
(100.0%)
Artificial intelligence for advancing particle acceleratorsGhribi, Adnan, Cassou, Kevin, Dalena, Barbara, Eichler, Annika, Guler, Hayg, Mistry, Andrew K., Oeftiger, Adrian, Shea, Thomas, Valentino, Gianluca, Welsch, Carsten P.
•
Europhys.News (2025)
•
DOI: 10.1051/epn/2025106
Novel Applications
(68.4%)
Tools & Libraries
(100.0%)
Reviews
(100.0%)
Machine learning for reducing noise in RF control signals at industrial acceleratorsHenderson, M., Edelen, J.P., Einstein-Curtis, J., Hall, C.C., Cruz, J.A. Diaz, Edelen, A.L.
•
JINST (2024)
•
DOI: 10.1088/1748-0221/19/11/p11015
Novel Applications
(53.6%)
Tools & Libraries
(46.7%)
Reviews
(100.0%)
Harnessing the power of gradient-based simulations for multi-objective optimization in particle acceleratorsRajput, Kishansingh, Schram, Malachi, Edelen, Auralee, Colen, Jonathan, Kasparian, Armen, Roussel, Ryan, Carpenter, Adam, Zhang, He, Benesch, Jay
•
Mach.Learn.Sci.Tech. (2024)
•
DOI: 10.1088/2632-2153/adc221
Reinforcement Learning & Autonomous Systems
(48.7%)
Novel Applications
(44.8%)
Surrogate Models
(100.0%)
Reconstructing time-of-flight detector values of angular streaking using machine learningMeier, David, Viefhaus, Jens, Hartmann, Gregor, Helml, Wolfram, Otto, Thorsten, Sick, Bernhard
•
Phys.Rev.Accel.Beams (2025)
•
DOI: 10.1103/csvm-858f
Beam Diagnostics
(39.2%)
Novel Applications
(30.4%)
Data-driven gradient optimization for field emission management in a superconducting radio-frequency linacGoldenberg, Steven, Ahammed, Kawser, Carpenter, Adam, Li, Jiang, Suleiman, Riad, Tennant, Chris
•
Phys.Rev.Accel.Beams (2024)
•
DOI: 10.1103/physrevaccelbeams.28.044603
RF Systems
(41.3%)
Novel Applications
(40.0%)
Reinforcement Learning for Charged Particle Beam Control to Minimize Injection Mismatch in Particle AcceleratorsBalasooriya, Thilina, Yoo, Shinjae, Schoefer, Vincent, Tseng, Huan-Hsin, Gao, Yuan, Lin, Weijian, Silva, Chanaka De
•
Journal (2025)
•
DOI: 10.1109/icassp49660.2025.10889501
Reinforcement Learning & Autonomous Systems
(56.9%)
Novel Applications
(46.9%)
Towards efficient machine-learning-based reduction of the cosmic-ray induced background in X-ray imaging detectors: increasing context awarenessPoliszczuk, Artem, Wilkins, Dan, Allen, Steven W., Miller, Eric D., Chattopadhyay, Tanmoy, Schneider, Benjamin, Darve, Julien Eric, Bautz, Marshall, Falcone, Abe, Foster, Richard, Grant, Catherine E., Herrmann, Sven, Kraft, Ralph, Morris, R. Glenn, Nulsen, Paul, Orel, Peter, Schellenberger, Gerrit, Stueber, Haley R.
•
Proc.SPIE Int.Soc.Opt.Eng. (2024)
•
DOI: 10.1117/12.3020598
Novel Applications
(31.0%)
Tools & Libraries
(29.4%)
A Teachable Machine for TransformersNicolas Pope, Matti Tedre
•
Proceedings of the 25th Koli Calling International Conference on Computing Education Research (2025)
•
DOI: 10.1145/3769994.3770061
Novel Applications
(30.4%)
Operations & Control
(28.0%)
Automated beam tuning of the TRIUMF ISAC facilityShelbaya, Olivier, Jung, Paul, Kester, Oliver, Hassan, Omar
•
JACoW (2025)
•
DOI: 10.18429/jacow-hiat2025-tux02
Novel Applications
(48.7%)
Beamline Design & Simulation
(44.4%)
Tools & Libraries
(100.0%)
Modelization of an Injector With Machine LearningMathieu Debongnie, Maud Baylac, Frédéric Bouly, Nicolas Chauvin, Angélique Gatera, Tomas Junquera, Didier Uriot
•
10th International Particle Accelerator Conference (2019)
•
DOI: 10.18429/jacow-ipac2019-wepts006
Novel Applications
(50.6%)
Beamline Design & Simulation
(50.2%)
Updates to Xopt for online accelerator optimization and controlRoussel, Ryan, Kennedy, Dylan, Boltz, Tobias, Baker, Kathryn, Mayes, Christopher, Edelen, Auralee
•
JACoW (2024)
•
DOI: 10.18429/jacow-ipac2024-thpg85
Tools & Libraries
(100.0%)
Novel Applications
(55.3%)
Surrogate Models
(100.0%)
Machine learning-based extraction of longitudinal beam parameters in the LHCIliakis, Konstantinos, Karlsen-Bæck, Birk Emil, Trad, Georges, Timko, Helga, Zampetakis, Michail, Argyropoulos, Theodoros
•
JACoW (2024)
•
DOI: 10.18429/jacow-ipac2024-tups56
Novel Applications
(44.7%)
Beamline Design & Simulation
(43.6%)
The reinforcement learning for autonomous accelerators collaborationSantamaria Garcia, Andrea, Eichler, Annika, Xu, Chenran, Kaiser, Jan, Scomparin, Luca, Schenk, Michael, Pochaba, Sabrina, Hirlaender, Simon
•
JACoW (2024)
•
DOI: 10.18429/jacow-ipac2024-tups62
Reinforcement Learning & Autonomous Systems
(67.0%)
Novel Applications
(55.8%)
Beam Energy Forecasting using Machine Learning at the CLEAR acceleratorGilardi, Antonio, Malyzhenkov, Alexander, Petersson,Alfred, Mostacci Andrea, Pollastro, Andrea, Aksoy, Avni, Filippetto, Daniele, Gamba,Davide, Granados, Eduardo, Tangari,Giacomo, Sjobak, Kyrre, Bonnard,Ladislas, Wroe,Laurence, Carranza-García, Manuel, Franek Ondrej, Korysko,Pierre, Corsini Roberto, Rieker,Vilde, Farabolini, Wilfrid, Mazzoni, Stefano
•
JACOW (2025)
•
DOI: 10.18429/jacow-ipac2025-thpm031
Novel Applications
(44.9%)
Statistics & Trends
(39.8%)
Advances in machine learning inference of dynamic aperture evaluation for the LHCMontanari,Carlo Emilio, Di Croce, Davide, Van der Veken,Frederik, Giovannozzi, Massimo, Appleby, Robert, Redaelli, Stefano, Pieloni, Tatiana
•
JACOW (2025)
•
DOI: 10.18429/jacow-ipac2025-wepm062
Novel Applications
(42.6%)
Statistics & Trends
(38.6%)
Advancements in backwards differentiable beam dynamics simulations for accelerator design, model calibration, and machine learningRoussel, Ryan, Edelen, Auralee, Gonzalez-Aguilera, Juan Pablo, Lehe, Remi, Huebl, Axel, Kaiser, Jan, Santamaria Garcia, Andrea, Xu, Chenran, Eichler, Annika, Charleux, Grégoire
•
JACoW (2024)
•
DOI: 10.18429/jacow-linac2024-thpb068
Beamline Design & Simulation
(54.2%)
Novel Applications
(53.2%)
Tools & Libraries
(100.0%)
Advanced algorithms for linear accelerator design and operationOng, Ysabella Kassandra, Bellan, Luca, Pisent, Andrea, Comunian, Michele, Fagotti, Enrico, Bortolato, Damiano, Montis, Maurizio, Giacchini, Mauro, Carletto, Osvaldo
•
JACoW (2024)
•
DOI: 10.18429/jacow-linac2024-tupb075
Novel Applications
(58.4%)
Statistics & Trends
(55.5%)
Surrogate Models
(100.0%)
Machine learningSnuverink, Jochem
•
CERN Yellow Rep.School Proc. (2024)
•
DOI: 10.23730/cyrsp-2024-003.2131
Novel Applications
(70.3%)
Tools & Libraries
(100.0%)
Reviews
(100.0%)
Assessing the Performance of Deep Learning Predictions for Dynamic Aperture of a Hadron Circular Particle AcceleratorDi Croce, Davide, Giovannozzi, Massimo, Montanari, Carlo Emilio, Pieloni, Tatiana, Redaelli, Stefano, Van der Veken, Frederik F.
•
Instruments (2024)
•
DOI: 10.3390/instruments8040050
Novel Applications
(49.4%)
Tools & Libraries
(100.0%)
Surrogate Models
(100.0%)
Machine learning applied to single-shot x-ray diagnostics in an XFELA. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O'Grady, J-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, J. P. Marangos
•
arXiv (2016)
Novel Applications
(30.3%)
By Facility Type
(29.7%)
Tools & Libraries
(100.0%)
Real-time Artificial Intelligence for Accelerator Control: A Study at the Fermilab BoosterJason St. John, Christian Herwig, Diana Kafkes, Jovan Mitrevski, William A. Pellico, Gabriel N. Perdue, Andres Quintero-Parra, Brian A. Schupbach, Kiyomi Seiya, Nhan Tran, Malachi Schram, Javier M. Duarte, Yunzhi Huang, Rachael Keller
•
arXiv (2021)
Reinforcement Learning & Autonomous Systems
(58.1%)
Novel Applications
(55.7%)
Surrogate Models
(100.0%)
AI-assisted Optimization of the ECCE Tracking System at the Electron Ion ColliderC. Fanelli, Z. Papandreou, K. Suresh, J. K. Adkins, Y. Akiba, A. Albataineh, M. Amaryan, I. C. Arsene, C. Ayerbe Gayoso, J. Bae, X. Bai, M. D. Baker, M. Bashkanov, R. Bellwied, F. Benmokhtar, V. Berdnikov, J. C. Bernauer, F. Bock, W. Boeglin, M. Borysova, E. Brash, P. Brindza, W. J. Briscoe, M. Brooks, S. Bueltmann, M. H. S. Bukhari, A. Bylinkin, R. Capobianco, W. -C. Chang, Y. Cheon, K. Chen, K. -F. Chen, K. -Y. Cheng, M. Chiu, T. Chujo, Z. Citron, E. Cline, E. Cohen, T. Cormier, Y. Corrales Morales, C. Cotton, J. Crafts, C. Crawford, S. Creekmore, C. Cuevas, J. Cunningham, G. David, C. T. Dean, M. Demarteau, S. Diehl, N. Doshita, R. Dupre, J. M. Durham, R. Dzhygadlo, R. Ehlers, L. El Fassi, A. Emmert, R. Ent, R. Fatemi, S. Fegan, M. Finger, M. Finger Jr., J. Frantz, M. Friedman, I. Friscic, D. Gangadharan, S. Gardner, K. Gates, F. Geurts, R. Gilman, D. Glazier, E. Glimos, Y. Goto, N. Grau, S. V. Greene, A. Q. Guo, L. Guo, S. K. Ha, J. Haggerty, T. Hayward, X. He, O. Hen, D. W. Higinbotham, M. Hoballah, T. Horn, A. Hoghmrtsyan, P. -h. J. Hsu, J. Huang, G. Huber, A. Hutson, K. Y. Hwang, C. Hyde, M. Inaba, T. Iwata, H. S. Jo, K. Joo, N. Kalantarians, G. Kalicy, K. Kawade, S. J. D. Kay, A. Kim, B. Kim, C. Kim, M. Kim, Y. Kim, Y. Kim, E. Kistenev, V. Klimenko, S. H. Ko, I. Korover, W. Korsch, G. Krintiras, S. Kuhn, C. -M. Kuo, T. Kutz, J. Lajoie, D. Lawrence, S. Lebedev, H. Lee, J. S. H. Lee, S. W. Lee, Y. -J. Lee, W. Li, W. B. Li, X. Li, X. Li, X. Li, X. Li, Y. T. Liang, S. Lim, C. -h. Lin, D. X. Lin, K. Liu, M. X. Liu, K. Livingston, N. Liyanage, W. J. Llope, C. Loizides, E. Long, R. -S. Lu, Z. Lu, W. Lynch, D. Marchand, M. Marcisovsky, P. Markowitz, H. Marukyan, P. McGaughey, M. Mihovilovic, R. G. Milner, A. Milov, Y. Miyachi, A. Mkrtchyan, P. Monaghan, R. Montgomery, D. Morrison, A. Movsisyan, H. Mkrtchyan, A. Mkrtchyan, C. Munoz Camacho, M. Murray, K. Nagai, J. Nagle, I. Nakagawa, C. Nattrass, D. Nguyen, S. Niccolai, R. Nouicer, G. Nukazuka, M. Nycz, V. A. Okorokov, S. Oresic, J. D. Osborn, C. O'Shaughnessy, S. Paganis, S. F. Pate, M. Patel, C. Paus, G. Penman, M. G. Perdekamp, D. V. Perepelitsa, H. Periera da Costa, K. Peters, W. Phelps, E. Piasetzky, C. Pinkenburg, I. Prochazka, T. Protzman, M. L. Purschke, J. Putschke, J. R. Pybus, R. Rajput-Ghoshal, J. Rasson, B. Raue, K. F. Read, K. Roed, R. Reed, J. Reinhold, E. L. Renner, J. Richards, C. Riedl, T. Rinn, J. Roche, G. M. Roland, G. Ron, M. Rosati, C. Royon, J. Ryu, S. Salur, N. Santiesteban, R. Santos, M. Sarsour, J. Schambach, A. Schmidt, N. Schmidt, C. Schwarz, J. Schwiening, R. Seidl, A. Sickles, P. Simmerling, S. Sirca, D. Sharma, Z. Shi, T. -A. Shibata, C. -W. Shih, S. Shimizu, U. Shrestha, K. Slifer, K. Smith, D. Sokhan, R. Soltz, W. Sondheim, J. Song, J. Song, I. I. Strakovsky, P. Steinberg, P. Stepanov, J. Stevens, J. Strube, P. Sun, X. Sun, V. Tadevosyan, W. -C. Tang, S. Tapia Araya, S. Tarafdar, L. Teodorescu, A. Timmins, L. Tomasek, N. Trotta, R. Trotta, T. S. Tveter, E. Umaka, A. Usman, H. W. van Hecke, C. Van Hulse, J. Velkovska, E. Voutier, P. K. Wang, Q. Wang, Y. Wang, Y. Wang, D. P. Watts, N. Wickramaarachchi, L. Weinstein, M. Williams, C. -P. Wong, L. Wood, M. H. Wood, C. Woody, B. Wyslouch, Z. Xiao, Y. Yamazaki, Y. Yang, Z. Ye, H. D. Yoo, M. Yurov, N. Zachariou, W. A. Zajc, W. Zha, J. Zhang, Y. Zhang, Y. X. Zhao, X. Zheng, P. Zhuang
•
arXiv (2022)
Novel Applications
(54.7%)
Tools & Libraries
(100.0%)
Reviews
(100.0%)
Closing the loop: Autonomous experiments enabled by machine-learning-based online data analysis in synchrotron beamline environmentsLinus Pithan, Vladimir Starostin, David Mareček, Lukas Petersdorf, Constantin Völter, Valentin Munteanu, Maciej Jankowski, Oleg Konovalov, Alexander Gerlach, Alexander Hinderhofer, Bridget Murphy, Stefan Kowarik, Frank Schreiber
•
arXiv (2023)
Novel Applications
(36.4%)
Tools & Libraries
(100.0%)
Plasma Surrogate Modelling using Fourier Neural OperatorsVignesh Gopakumar, Stanislas Pamela, Lorenzo Zanisi, Zongyi Li, Ander Gray, Daniel Brennand, Nitesh Bhatia, Gregory Stathopoulos, Matt Kusner, Marc Peter Deisenroth, Anima Anandkumar, JOREK Team, MAST Team
•
arXiv (2024)
Novel Applications
(34.9%)
Surrogate Models
(100.0%)
Tools & Libraries
(100.0%)
Bayesian Optimization Algorithms for Accelerator PhysicsRyan Roussel, Auralee L. Edelen, Tobias Boltz, Dylan Kennedy, Zhe Zhang, Fuhao Ji, Xiaobiao Huang, Daniel Ratner, Andrea Santamaria Garcia, Chenran Xu, Jan Kaiser, Angel Ferran Pousa, Annika Eichler, Jannis O. Lubsen, Natalie M. Isenberg, Yuan Gao, Nikita Kuklev, Jose Martinez, Brahim Mustapha, Verena Kain, Weijian Lin, Simone Maria Liuzzo, Jason St. John, Matthew J. V. Streeter, Remi Lehe, Willie Neiswanger
•
arXiv (2024)
Statistics & Trends
(50.2%)
Novel Applications
(49.8%)
Reviews
(100.0%)
Surrogate Models
(100.0%)
Beyond PID Controllers: PPO with Neuralized PID Policy for Proton Beam Intensity Control in Mu2eChenwei Xu, Jerry Yao-Chieh Hu, Aakaash Narayanan, Mattson Thieme, Vladimir Nagaslaev, Mark Austin, Jeremy Arnold, Jose Berlioz, Pierrick Hanlet, Aisha Ibrahim, Dennis Nicklaus, Jovan Mitrevski, Jason Michael St. John, Gauri Pradhan, Andrea Saewert, Kiyomi Seiya, Brian Schupbach, Randy Thurman-Keup, Nhan Tran, Rui Shi, Seda Ogrenci, Alexis Maya-Isabelle Shuping, Kyle Hazelwood, Han Liu
•
arXiv (2023)
Reinforcement Learning & Autonomous Systems
(44.5%)
Novel Applications
(39.6%)
Surrogate Models studies for laser-plasma accelerator electron source design through numerical optimisationG. Kane, P. Drobniak, S. Kazamias, V. Kubytskyi, M. Lenivenko, B. Lucas, J. Serhal, K. Cassou, A. Beck, A. Specka, F. Massimo
•
arXiv (2025)
Novel Applications
(47.8%)
Beamline Design & Simulation
(46.0%)
Surrogate Models
(100.0%)
Towards Agentic AI on Particle AcceleratorsAntonin Sulc, Thorsten Hellert, Raimund Kammering, Hayden Hoschouer, Jason St. John
•
arXiv (2025)
Reinforcement Learning & Autonomous Systems
(59.8%)
Novel Applications
(58.9%)
Tools & Libraries
(100.0%)
Variable Rate Neural Compression for Sparse Detector DataYi Huang, Yeonju Go, Jin Huang, Shuhang Li, Xihaier Luo, Thomas Marshall, Joseph Osborn, Christopher Pinkenburg, Yihui Ren, Evgeny Shulga, Shinjae Yoo, Byung-Jun Yoon
•
arXiv (2024)
Novel Applications
(41.2%)
Data Management
(40.6%)
FusionMAE: large-scale pretrained model to optimize and simplify diagnostic and control of fusion plasmaZongyu Yang, Zhenghao Yang, Wenjing Tian, Jiyuan Li, Xiang Sun, Guohui Zheng, Songfen Liu, Niannian Wu, Rongpeng Li, Zhaohe Xu, Bo Li, Zhongbing Shi, Zhe Gao, Wei Chen, Xiaoquan Ji, Min Xu, Wulyu Zhong
•
arXiv (2025)
Novel Applications
(35.6%)
Data Management
(31.2%)